Chemical bonding and aromaticity in trinuclear transition-metal halide clusters.
نویسندگان
چکیده
Trinuclear transition-metal complexes such as Re(3)X(9) (X = Cl, Br, I), with their uniquely featured structure among metal halides, have posed intriguing questions related to multicenter electron delocalization for several decades. Here we report a comprehensive study of the technetium halide clusters [Tc(3)(μ-X)(3)X(6)](0/1-/2-) (X = F, Cl, Br, I), isomorphous with their rhenium congeners, predicted from density functional theory calculations. The chemical bonding and aromaticity in these clusters are analyzed using the recently developed adaptive natural density partitioning method, which indicates that only [Tc(3)X(9)](2-) clusters exhibit aromatic character, stemming from a d-orbital-based π bond delocalized over the three metal centers. We also show that standard methods founded on the nucleus-independent chemical shift concept incorrectly predict the neutral Tc(3)X(9) clusters to be aromatic.
منابع مشابه
Aromaticity and antiaromaticity in transition-metal systems.
Aromaticity is an important concept in chemistry primarily for organic compounds, but it has been extended to compounds containing transition-metal atoms. Recent findings of aromaticity and antiaromaticity in all-metal clusters have stimulated further research in describing the chemical bonding, structures and stability in transition-metal clusters and compounds on the basis of aromaticity and ...
متن کاملBeyond organic chemistry: aromaticity in atomic clusters.
We describe joint experimental and theoretical studies carried out collaboratively in the authors' labs for understanding the structures and chemical bonding of novel atomic clusters, which exhibit aromaticity. The concept of aromaticity was first discovered to be useful in understanding the square-planar unit of Al4 in a series of MAl4(-) bimetallic clusters that led to discoveries of aromatic...
متن کاملTransition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds.
Atomic clusters have intermediate properties between that of individual atoms and bulk solids, which provide fertile ground for the discovery of new molecules and novel chemical bonding. In addition, the study of small clusters can help researchers design better nanosystems with specific physical and chemical properties. From recent experimental and computational studies, we know that small bor...
متن کاملAromaticity in all-metal annular systems: the counter-ion effect.
The effect of counterions on the bonding, stability and aromaticity of trigonal dianion metal clusters has been analyzed through the behavior of various conceptual density functional theory based reactivity descriptors and the nucleus independent chemical shift calculated at different levels of theory, comprising one-determinant approaches and beyond (QCISD, CASSCF(8,8) and NEVPT2), for a prope...
متن کاملTheoretical aspects of metal cluster chemistry
During the last twenty years the Polyhedral Skeletal Electron Pair Theory and the isolobal analogy have provided a theoretical basis for the rapid experimental developments, which have occurred in metal cluster chemistry. These theoretical principles have been underpinned by m.o. calculations on specific molecules and more generally by the Tensor Surface Harmonic Theory. This paper will review ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inorganic chemistry
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2011